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Abstract—Techniques are presented for the synthesis of inter-

digital acoustic surface-wave filter tap weights so as to give transfer

functions having a Chebyshev stopbsnd attenuation characteristic

with a specified rniuiium attenuation, along with a single-peaked

or a Chebyshev double-peaked passband characteristic. The tech-

niques first give the gain zero locations, and as a result are very

flezible. Llnesr phase or min&-mrn or maximum phase-shtit char-

acteristics are obtainable. The trsnsf er function can be factored into

two sets of zeros which cap be realized as two separate apodized

transducers which, when operated with a multistrip coupler, will

give the desired overall transfer function. Also, it is shown that the

class of designs having a double-peaked passbsnd can be realized

in the form of an unanodized phase-reversal transducer (PRT) in

cascade with a second transducer having very smooth anodization

and no phase reversals. The fact that such designs have such smooth

anodization with relatively few small taps can help in obtaining pre-

cision performance.

I. INTRODUCTION

I N this paper, methods for the determination of finger

tap weights for the two transducers required in an

interdigital acoustic surface-wave filter are treated. Vari-

ous tap-weight design procedures are presented that yield

either of two general classes of Chebyshev filter transfer

functions.

Each tap, in the discussion to follow, is realized by the

gap between two fingers of an interdigital transducer, and

the taps are equally spaced. The magnitude of a tap

weight is determined by the active overlap length of the

two adj scent fingers, and the sign of the weight is deter-

mined by the relative polarity of the electric field in the

gap. Since the taps correspond to the finger gaps, it takes

n + 1 fingers to realize n taps.

It is assumed that the transducer electric ports are

lightly loaded so that electrical interaction effects can be

neglected. In this case it can be seen that the tap weights

(put in functional form as a sequence of impulses) approxi-

mate the impulse response of the transducer. Then the

frequency response of a transducer will, of course, be

related to the tap weights by the Fourier transform. In the

designs under consideration the overall transfer function

is the product of the transforms for the two transducers.
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Since the impulse responses of the filters w~der discus-

sion consist of equally spaced weighted impulses, Fourier

analysis shows that the frequency response must be

periodic. It further can be shown that the tmnsfer func-

tion corresponding to such impulse responsw will have

only zeros on the finite plane, all of the poles of the

function being combined in an essential singularity at

infinity. This is a severe restriction on the trmsfer func-

tion since the poles are the natural frequencies of vibration

of the circuit, and one would ordinarily place them adj a-

scent to the passbands of the filter. If it were not for tlhis

limitation on the poles, it would take many fewer ta,ps

to realize a desired transfer function.

In the discussion to follow, filters with tivo types of

transfer functions designated type O and type 2 will be

discussed. Both have ‘[equal-ripple” attenuation in their

stopbands. Type 2 differs from type O in that it is capable

of a much flatter passband, but at a price of appreciably

more taps. The type number indicates the number of zeros

in the transfer function off of the jw axis per period of the

transfer function. Thus the type O design h M all of its

zeros on the jm axis while the type 2 design h w two zeros

per period off the ja axis as’ well as zeros on the @ axis.

II. TYPE O DESIGNS

As indicated previously, the type O designs have all

their transfer function zeros on the j~ axis and all of the

poles at infinity. Fig. 1 shows a sample response for such

a design. Note that the attenuation level is equal ripple in

the stopband and has a minimum attenuation designated

by ATN. The response has arithmetic symmetry about

the frequency wO,and the response is periodic, one period
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Fig. 1. Response for a type O design with M = 20.
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of the response being shown in Fig. 1. The width of the

stopband is established by the parameter wJm. Distinc-

tive features of this transfer function are its equal-ripple

stopband characteristic and the fact that the passband is

necessarily rounded at the top.

The tap weights for designs of the sort in Fig. 1 could

be obtained by adaptation of Dolph–Chebyshev antenna

design procedures [1]. However, herein a different ap-

proach was used which involved two conformal mappings

and, at least for the purposes herein, this approach appears

to be simpler than the methods commonly used for

antennas.

Let us now consider the design of tap weights so as to

obtain a transfer function such as that in Fig. 1. Let M be

the number of zeros per period for the filter response,

where herein for a type O design M is required to be an

even number. In Fig. 1, M = 20 since there are 20 points

at which the attenuation is infinite within the frequency

response period. For given values of M and WJO.Wthe

minimum stopband attenuation is given by

‘TN=2010g10cosh[:cosh-1K:::37)ldB
(1)

The location of the zeros of the transfer function which lie

between w = O and u = COOare given by

Wk—
@O k=l to M/2 ‘: Sin-’[sin(E:)

( )11 – cos [(2k – l)m/M] 1’2
.

2
. (2)

Having determined these zeros, the remaining zeros are

determined by symmetry and the periodic nature of the

transfer function. The derivations of (1) and (2) are

discussed in Appendix A.

The overall transfer function can be specified starting

with a Chebyshev polynomial and applying the mappings

discussed in Appendix A. However, for our present pur-

poses it will be more convenient to specify the transfer

function in the form

“(o)“’fi[sin[(uw?=lsin[(%w ‘3)
This function constructs all of the required zeros for the

tIYUM3fW fUIICtiOII by use Of faC@S for zeros at tik and – Wk,

and then generating the infinite array of zeros required for

periodicity by introducing sine functions. The parameter

CA in front is an arbitrary constant which can be con-

veniently chosen to make GA (COO)= 1.

Equation (3) is a form for the transfer function which

is particularly convenient for the purpose of taking the

inverse Fourier transform. If we take the inverse Fourier

transform of the pair of sine functions shown in (3), we

obtain

!f’Ic(t) = + COS(~@JJWo)/i(t)

– +[c$(t – 7r/wo) + 13(t + 7r/cOo)]. (4)

Since (3) consists of a product of pairs of sine functions,

the inverse Fourier transform for the overall transfer

function can be obtained by convolution of the transforms

of the various sine-function pairs. Thus the impulse

response for the filter is obtained by the multiple con-”

volution

h’(t) = c~~~(t) * ?’,(t) * --- * ~~f/..(t) (5)

where the T~ (t) are as defined in (4). Since the T~ ( t)

consist only of delta functions, the convolution in (5)

is very easy to accomplish [2] and resul@ in a sequence of

weighted delta functions (i.e., the tap weights).

We have found that, at least for some cases when M is

large (say, 70 or more), the accuracy of the multiple

convolutions in (5) may degenerate. In such cases the

accuracy is greatly improved by first computing the

frequency response by use of (3) or (A4) of Appendix A.

Then the taps are obtained by use of a discrete Fourier

transform routine such as that in the IBM 360 Scientific

Subroutine Package. Note that in this application the

fast Fourier transform usually is not desirable since it

is specifically limited to cases having 2N samples.

In the upper right of Fig. 1 is shown the approximate

relative tap weights obtained by (5) for this example.

Note that for M = 20 zeros per period the design process

results in M + 1 = 21 taps, which calls for M + 2 = 22

fingers in the transducer. Also note that the tap weights

are more or less triangular in distribution and hence

should be reasonably easy to realize. As discussed in

Section VI, the second transducer to be used in conjunc-

tion with one apodized as in Fig. 1 can usually be a

uniform transducer with a sizable number of fingers.

III. TYPE 2 DESIGNS

Where type O designs are usable, they are very desirable

because of their simplicity of calculation, because of their

relatively smooth anodization with no phase reversals, and

because they require relatively few taps. However, type O

designs necessarily have rounded passbands, and if the

desired signal is of wide bandwidth, this might not be

acceptable. Since we are constrained to keep all of the

poles of the transfer function at infinity, the only way

that the passband can be flattened is by introduction of
zeros off the & axis in the vicinity of the passband. This

is illustrated in the complex frequency plane (i.e., p’ =

u + jw plane) W in Fig. 2(b). In this plot the zeros are
sketched for a transfer function having M = 6 jw-axis

zeros per period. (Herein M will always be the number of

zeros per period on the jm axis only, and for type 2 designs

M can be odd or even. ) The pairs of off-axis zeros near the

passbands have the effect of putting a dip in the center

of the passband, as is indicated in the M = 29 example

plotted in Fig. 3. The term ‘%ype 2 design” will herein
refer to designs having two zeros per period off of the

jw axis. It would have been possible to have achieved



MATrHAm et al.: .4cousTIc suEFAcE-w.4vE FILTER T-m mIGHTs

b

JJ’J.,
0

I !-ji?wo

I0 \-ywo
(a) (b)

Fig. 2. (a) High-pass-prototype transfer function. (b) Bandpaas
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Fig. 3. Frequency response for a type 2 design with M = 29.

the desired effect in the response magnitude by use of

only one zero per period off the joJ axis, but this would

eliminate the possibility y of having linear phase. The

arrangement of zeros in Fig. 2 (b) has quadrantal sym-

metry which guarantees that the jti axis will be a contour

of constant phase except for a jump of r at each zero on

the jo axis.1 If, say, only the zeros in the left half-plane

were included, it would be possible to flatten the magnitude

of the response in the passband, but the&J axis would no

longer be a contour of constant phase.

Our design procedure for obtaining tap weights for

transfer functions like that in Fig. 3 is to first obtain a

high-pass prototype design using design equations ob-

tained with the aid of an electrostatic potential analogy

[3], [4] (see Appendix B). Miller [5] used similar methods

to treat some related (but different) transfer functions.
Fig. 2(a) shows a pole and zero plot in a p’ plane for a

high-pass prototype transfer function corresponding to

1 The reference ports for the transfer functions derived herein are
at the center of the transducer. Moving the acoustic reference ports
to the ends of the transducers-adds linear phase.

the desired p-plane function in Fig. 2(b). The desired

bandpass function and the high-pass prototype will both

have the same stopband attenuation and passband ripple,

The prototype can be mapped to the desired function by

use of the conform.al mapping

()p’ = tanh ‘p~. “

Note that the transfer function in the p’ plane n Fig. 2(a)

has fourth-order poles at p’ = a’ = 41, wh ch map to

the point at infinity in the p plane. The ,jk’-axis zeros in

the p’ plane map to periodic jco-axis zeros in the p plane,

while the zeros at + UO’ in the p’ plane map to periodlie

zeros off the jw axis in the p plane. Points on the imaginary

axis in the two planes are related by

1 ()Irw—OJ = tan 2U0 . (’7)

Let ua be the lower frequency stopband ed~;e indicated

by the dashed line in Fig. 3. The correspondir.g high-pass

prototype stopband edge is given by

(8)

in the p! plane.

The attenuation characteristic of the high-pass proto-

type can be obtained from

dB’ = 10 log,.
[
:+&,*+ 1

where for W’ > tim~

~ = [( CO’/CLLZ’)2 -- 1]’1’ + mO(W’/a~) tM+z)/2

[ [(w’/%’)’ -- 1]’/’ – 7no(w’/&ra’) 1

(9)

[

. [(cD’/oJ:)’ – l-y’ – %(J/%J (lo)1.[((.J/LOa’)2– 1]1/2 + m,(w’/w;).

and where

m. = (1 + CO.’z)112

‘n’=[l+(%)ro (11)

In (9), the upper sign is for M even and the 1ower sign is

for M odd. In (11), Uo’ is the location of the right-hand

a’ axis zero in Fig. 2(a). Fig. 4 shows a sketch of a typical

high-pass prototype attenuation characteri~itic for the

case of M = 6. Notice that the zero-dB reference level

has been taken at the crest of the stopband ripples. The

stopband attenuation level AT’N as defined in Fig. 4 can

be calculated by use of (9) with w’ ~ @ so

‘= ‘m’(s3”+2)’2(5%)- “2)
For a given design usually CO.’will be known from (8).

In order to obtain a design with a desired value of ATN
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Fig. 4. Approximate decibel frequency response for the transfer
function in Fig. 2(a).

and with a given passband Chebyshev ripple, it is neces-

sary to search for appropriate values of M and uO’. We

have done this conveniently by programming (9)–(11).

For a given a.’ and trial value of M the program searches

for a value of UO’that will achieve the desired passband

ripple. A good starting value for UO’ to use can be obtained

from

‘=[(M:2)(mo::l)r ’13)

ml _ D + (D’ +4)1/2—
2

(14)

(15)

This value of uO’ will give a maximally flat passband, and

in order to obtain a Chebyshev ripple in the passband, one

should use a value of UO’ greater than ( UO’ ) fl,t. If” the

value of ATN obtained for the given passband ripple is

too small, then a larger value of M must be used.
After appropriate design values for M and uO’ have

been obtained, the j.o’-axis zero locations Wk’ are obtained

by solving

[

mWk’/ti.’
(M +2) tan-’ [l _ ~wkI/w:)211E

1

[

mlwk’/waf
– 2 tan–l

[1 – @’/fJJa’)2~/2 1
= (2k – 1) (7r/2) /k=l ,0.7, if M = even

= h% Ik=oto J, if M = odd (16)

for the w~’. In (16)

J = M/2 if M = even

J = (M – 1)/2 if M = odd. (17)

Having the u~’ in the p’ plane, the corresponding zeros

for the primary period of the function in the p plane are

obtained by

COk = (2d0/7r) tan—l w’ ~=1to J for M even

k-o to J for M odd. (18)

The zeros at p = *uO + .j.w indicated in Fig. 2(b) are

located with the aid of the equation

ao = (20J0/7r) coth–1 so’. (19)

The transfer function for type 2 designs is seen to be

G~ (CO)= c~[~ cosh (UO~/wO)

— + cos ( (CO— LOO)7r/coo)][sin (cMr/20Jo)]

. fi sin [(co – 6Jk)7r/2coo] sin [(0+ cw)7r/2c00].
k-1

(20)

Note that (20) has two factors not included in (3) for

type O designs. The first square-bracketed factor intro-

duces the complex zeros at p = + I uo I + jao and at

periodic repetitions of these points. The second square-

bracketed factor gives zeros at u = O, 20J0,etc., and should

only be included when M is odd. The multiplier CB is a

constant which can be adjusted to fix the minimum loss

ratio.

The inverse Fourier transforms of the first and second

square-bracketed terms in (20) are, respectively,

Z’c(t) = cosh (um/coJ [a (t) /2]

+ i[b(t – T/@o) + b(t + r/we)] (21)

and

To(t) = *[6(t – 7r/2wo) – a(t + r/2wo)’]. (22)

The transforms of the remaining factors in (20) giving

jw-axis zeros are obtained by (4). Again the impulse

response can be obtained from the convolution [2] of

these various transforms as indicated by

h~(t) = Cl?TC(t) * To(t) * T~(t) * . . . * ~J(t) (23)

or by computing GB (w) and using the discrete Fourier

transform. For a design having M ji-axis zeros per period

of response, there will be M + 3 tap weights required

and M + 4 transducer fingers.

The solid line in Fig. 3 shows the computed response

for a design having wa/wo = 0.8 and ATN about 52 dB,

similar to the design in Fig. 1 but with 0.2-dB Chebyshev

ripple in the passband. This design has M = 29, uO’ =

7.5359, and uO/uO = 0.084979. The presence of complex

zeros near the passband in type 2 designs tends to weaken

the passband, and, as a result, more stopband zeros are
required in order to achieve a desired value of ATN.

Thus the type 2 design required 32 taps as compared to

only 21 for the analogous type O design in Fig. 1. The

resulting tap weights are shown in Fig. 5(a). Note that

they are symmetrical and have a phase reversal toward

the outer ends of the tap sequence.

IV. SOME DESIGN VARIATIONS

Filter design from the pole and zero viewpoint has an

advantage of flexibility y. For example, if we wish we can

obtain a design for the transfer function in Fig. 2(b)

having the same magnitude for frequencies .@ but with
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factored into two parts, one of the resulting ‘two tran~-

ducers had a sequence of positive taps [12]. Such a

I sequence would not be acceptable for use in an acoustic
1

1 1
i“’’’” surface-wave filter. The use of an M = 29 design, whic”h

1111’

(b)

Fig. 5. Tap weights for two type 2 designs with M = 29. (a) Case
of linear phase. (b) Design giving minimum phase when com-
municating with a wide-band transducer on the right.

Fig. 6. The design in Fig. 5(a) factored into two sets of transducer
tap weights. (A multistrip coupler would be required between
these two transducers.)

the” left-half-plane zeros moved over to the right half-

plane to yield double zeros there. A possible disadvantage

of such a design is that it would no longer have linear

phase since the zero pattern would no longer have quadran-

tal symmetry. However, as a matter of interest, such a

design was worked out with the solid-curve magnitude

characteristic in Fig. 3 and with double right-half-plane

zeros. The resulting tap weights are shown in Fig. 5(b).

If this transducer transmits to a wide-band transducer

placed on the left, the overall transfer function will have

double zeros in the right half-plane; whereas if this con-
figuration transmits to a wide-band transducer placed on

the right, the overall transfer function will have double

zeros in the left half-plane. Fig. 5(a) and (b) also illus-

trates the point that symmetry in the transducer conf-

iguration goes along with linear phase.

Another variation of the solid-curve design in Fig. 3

was obtained by partitioning the overall transfer function

into two factors by separating alternate jo-axis zeros and

assigning each factor one of the off-jw-axis zeros. Then

one factor was used to realize one transducer while the

other factor was used to realize the other transducer.

When used in conjunction with an intervening multistrip

coupler [6], [7], the overall transfer function will, in

theory, be the product of the transfer functions for the

two individual apodized transducers. Fig. 6 shows the

tap weights for the two transducers. It is of interest to

note that in the case of a previous M = 28 design (which

had no zero at co = 0). when the transfer function was

has a zero at u = O and adjacent zeros relatively close

to u = O, avoids thk problem since the frequent y response

for both factors is either zero or small at OJ= O. (A se-

quence of taps with the same sign can result from a

sizeable frequency response at dc. )

V. INCORPORATION OF A PHASE-REVERSAL

TRANSDUCER

In the left of Fig. 7(b) is shown a tap-weight configura-

tion such as can be realized using the unanodized phase-

reversal type of transducer (PRT) introduced by “Bristol

[8]. It can be shown that this type of transdu~er realizes

a set of zeros off of the jo axis such as those of!-axis zeros

shown in Fig. 2(b), along with additional zeros on the

jw axis. Thus a transfer function such as that in Fig. 2(b)

can be realized approximately by use of an unanodized

PRT in cascade with an apodized transducer which has

no phase reversals,, Anodization of the second transducer

is needed in order to realize the .~ti-axis zeros not already

satisfactorily realized by the PRT. Since only one of the

transducers is apodized, the overall transfer function is

simply the product of the transfer functions for the two

individual transducers [10].

Fig. 7 illustrates these principles. Fig. 7 (a) shows a

75-tap type-2 design obtained by the methods of Section

III. By itself it gives a frequency response like that in

Fig. 8, except that it has very accurately cont~olled equal

ripples in its stopbands with the ripple cresti} along the

horizontal dashed line in the figure. This design has zeros

off the .jCOaxis as suggested in. Fig. 2(b) with I uo/wo I ‘=

0.036628. Such zeros can be realized approximately using

the unanodized PIRT taps on the left in Fig. 7(b). The

PRT also introduces other zeros on the jco axis, some of

(a)

“L ~“
=D-REW?SED TDF5

(b)

Fig. 7. (a) An M ,= 72 type 2 design. (b) Two t~ ansducer tap
sequences which when operated in cascade give nearly the same
response as for the tap weights at (a).
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Fig. 8. Frequency response for the tap weights in Fig. 7(b) in

cascade. [The horizontal dashed line indicates the equal-ripple
attenuation level for the design in Fig. 7(a).]

which are quite close to the,iw-axis zero locations needed

for the desired transfer function given in (20). Thus the

zeros not already realized by the PRT are grouped

together and realized by a second transducer (which is

type O since it has only jo-axis zeros). For this example the

apodized transducer design came out as shown at the right

in Fig. 7 (b). Note that the apodization is very smooth

with relatively few small taps, a situation which should

help in the practical realization of the taps. The resultant

response is as shown in Fig. 8 where the stopband attenua-

tion for the transducers in Fig. 7(b) in cascade every-

where equals or exceeds that of the design in Fig. 7(a)

(indicated by the horizontal dashed line), while the pass-

band characteristics are very nearly the same as for the

design in Fig. 7(a).

The design of a I?RT with taps such as those in Fig. 7 (b)

can be worked out as follows. For frequencies p = @

the transfer function for a PRT is given by2

G’F.R(0)) =
sin [N,u] + sin [(N, + 2) u] – sin [lVu]

(24)
sin u

where

()‘lrco-(.1)~

‘u=———
Ztio”

In (24) N. is the number of taps in the center section of the

transducer indicated in Fig. 7(b), and N is the total

number of tap positions in the transducer including the

positions of the zero taps at the phase reversals. Thus the

design in Fig. 7 (b) has 31 nonzero taps, plus 2 zero taps,

giving N = 33.

One restriction on the design of the PRT is that it must

not pro”duce any ju-axis zeros in the passband region

between u. and w~indicated in Fig. 8. Investigation shows

that the location of the ja-axis zeros closest to coo, the

passband center, is in typical cases controlled predomi-

nantly by NC. As a rough estimate the largest value of N.

that can be used is approximately

2 Bristol [8] gave (24) herein with (using our notation) u rather
than sin u in the denominator; that is usually a satisfactory ap-
proximation. However, (24) gives the exact response for taps such
as those in Fig. 7(b) [11].

(25)

At the complex frequencies p = +cO + juo (and their

periodic repetitions) where zeros of GPE are desired, (24)”

becomes

sinh ~Ncw_J+ sinh [(NC +2) w] – sinh [Nw]— (26)
sinh w

where

7ruo
w.—.

2@l

Our only degrees of freedom for achieving the desired

zeros are in our choices of N. and N. Thus it will usually

not be possible to realize the desired value of a. exactly.

However, in the several examples we have tried it was

possible to achieve a value for u. satisfactorily close to

the desired value. (If desired, more degrees of freedom

can be introduced by allowing for the possibility of more

than one zero tap at the phase reversals. ) For an exact

design (26) would be equal to zero. Thus the desired

approximate design is obtained by searching for the values

of Nc and N which make (26) as small as possible. Our

procedure was to prepare a computer program to evaluate

(26) and find the minimum value of Gp~ for trial values

of N, while at first N. is held fixed at (NC) ~... Next, NC

is reduced in size by one, and the minimum value versus N

is again sought. This routine quite quickly arrived at

values of N. and N giving a good approximate solution.

It is conceivable that in some cases one might want to

explore larger values of Nc than indicated by (25), and

somewhat larger values might be acceptable in some cases

since (25) is only approximate. Solutions using larger

values of N. should be checked using (2’4) in order to be

sure there are no zeros between w and Wb.

After values of N. and N for the PRT are determined,

the ju-axis zeros introduced by the PRT can be deter-

mined from (24). These zeros could be simply added to

the ones in (20), but it is found to be desirable to thin the

zeros out some or the passband will be narrowed. This is

particularly true for excess zeros immediately adjacent

to the passband. Excess ja-axis zeros well away from the

passband increase attenuation in that region but have
little other effect. Many of the zeros from the PRT will be

quite close to locations called for by the transfer function,

so the apodized transducer need supply only part of the

j~-axis zeros. It is not difficult to make a reasonably good

selection of zeros but it is good to check the overall

transfer function versus frequency after a selection has

been made. This is readily done by taking the product of

(24) for the PRT “and (3) for the apodized transducer.

It is probable “that this technique of realizing transfer

functions using an unanodized transducer with phase

reversals along with an apodized transducer can be ex-

tended to treat cases with more than two ripples in the

passband. However, further mathematical derivations will

be needed for such cases.
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VI. PHYSICAL REALIZATION OF THE TAPS

This paper is addressed primarily to the problem of

determining appropriate tap weights for certain types of

bandpass filters. However, there are additional considera-

tions involved in the practical realization of these taps,

and it appears appropriate to make some brief mention

of them.

Since in surface-wave filters of the types under con-

sideration it is necessary to go from electrical to mechanical

energy and back again, two transducers are always re-

quired. For a design like that in Fig. 1 the second trans-

ducer can be one with a reasonably large number of fingers

having uniform length and with no reversals in the finger

sequence. This second transducer would increase the stop-

band attenuation and narrow the passband somewhat,

but these effects would presumably be acceptable if a

rounded passband as in Fig. 1 were adequate for the

application at hand. Designs such as those in Fig. 5 (a)

and (b) and in Fig. 7(a), which are intended to yield a

relatively square passband region, would require the use

of a wide-band output transducer having only a few

fingers if the passband is not to be distorted. This would

typically result in an unnecessarily large minimum loss

for the filter. In addition, the relatively large number of

small taps (i.e., small finger overlaps) in these designs

may lead to performance errors due to diffraction and

also due to the fringing fields at the ends of the fingers

bei~g a significant percent of the desired small effective

overlap. These sources of error are minimized in the

design in Fig. 1 which has very smooth anodization with

relatively few small taps and no phase reversals.

~ If the overall transfer function is to be realized using

two apodized transducers as in Fig. 6, it is necessary to

use a rnultistrip coupler between the two transducers [7],

or else the response will be greatly distorted [10]. This

approach can give good results and the multistrip coupler

has an added advantage of helping to reduce bulk-wave

responses [7]. However, the inclusion of a multistrip

coupler also has disadvantages of introducing more loss,

requiring a more complex photomask, and requiring a

larger substrate since the device pattern must be twice

as wide. In addition, if the overall transfer function is

factored to realize two “transducers as in Fig. 6, or if two

transducers as in Fig. 7(a) are used, the transducers

will again involve a sizable number of relatively small

taps with phase reversals.

Though the various approaches previously outlined can

give satisfactory results if proper] y implemented, the use

of designs such as that in Fig. 7(b) appears to us to provide

a potentially attractive means for implementing precision

designs. The apodized transducer on the right is of type O.
Thus it has no phase reversals, and has a smooth anodiza-

tion with relatively few small taps. These factors should

help to improve the accuracy of tap realization. Also since

the PRT on the left is unanodized, no multistrip, coupler

is required. However, our initial experiments with PRT’s

indicate that some additional work on the design of PRT’s

is desirable. This is because if the PRT is composed of

electrodes with uniform widths and gaps throughout, the

7

effective tap strengths at, the ends of the transducer and

in the vicinities of the phase reversals are somewhat

different than those in the rest of the transducer due to

the different patterns of the interelectrode fringing ‘electric

fields in these regions. This results in a somewhat oversized

passband ripple with slightly unequal minimum attenua-

tion points, and also causes some small errors in the ju-axis

zero locations. We believe that at least in cr near the

fundamental pas~band the frequency response errors due

to these transition-region fringing field patterns can be

compensated by proper altering of the finger widths and

gaps in the vicinities of the ends of the transducer and in

the vicinity of the phase reversals. We propo:ie to inves-

tigate this matter in the future.3 Such refinement of the

PRT design should help to achieve unusually xood design

accuracy for designs as in Fig. 7 (b). -

APPENDIX A

DI3RIVATION OF EQUATIONS

THE TYPE O CASE

FOR

The equations for the type O case are reaclily derived

starting from a Chebyshev polynomial

l“n((.o”) = Cos (n Cos-’ co”) (Al)

and then applying conformal mappings. Fig. 9(a) shows

a sketch of a Chebyshev polynomial versus W“ for the

case of n = 4. The polynomial in (Al) is then mapped to

*

T.@’)

+1—. ——
—

-ll_ 0 w“
—— —— J+ I

-1

(a)

—
T-

-k’’. –u__Q

[k!)

tG((AI)

0—

(c)

Fig. 9. (a) A Chebyshev polynomial. (b) The polynomial mapped
by (A2). (c) The previous result mapped again ‘OY (A3).

8 References [13] and [14] analyze the fringing effects about
structures with fixed linger widths and periods, wh we the str uc-
ture may have phase reversals and/or missing finger:. The investi-
gation proposed differs in that, while most of the finger widths and
periods remain fixed, some of the finger widths and pw,itions would
be modified in order to more accurately realize the given taps.
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anew frequency variable u’ by use of

II _
w“ – w).”

co—

A

the mapping

(A2)

where

1 – %’2
A=

2

and

()1 + coa’z 1’2
~c~ =

2“

Fig. 9(b) illustrates the effect of this mapping on the

polynomial in Fig. 9(a). Here u.’ is an equal-ripple band-

edge frequency which is arbitrary within the limits

O < co.’ < 1. The frequency w: is the mapping of the

original zero frequency W’t = O.

The function in Fig. 9 (b) has some of the desired form

but is not yet the desired function since it is not periodic,
,.

and since it increases monotonically for I co’ I > 1. To get

the desired result we intioduce the additional mapping

()‘TO.)

~1 = —~os —
2W0

(A3)

which converts the function in Fig. 9(b) to the form in

Fig. 9(c). Here COOis the passband-center frequency, and

the mapping has the effect of mapping the region from

co’ = –1 to CO’= +1 in Fig. .9(b) to the region co = O

to u = 2w0 in Fig. 9(c), and also to periodic repetitions of

this region. Equations (AZ) and (A3) applied to (Al)

cause T. (cQ”) to map to

GA(co)
— = (–1)’

CB

[( sin2 (7ro@oJo) — 2 sinz (7rc0/2~0)
. Cos ‘n Cos-1

sinz (7ru./2oJo) )1
(A4)

which is the function sketched in Fig. 9(c) for the case of

n = 4. Here CO. is a mapping of w’, and coo — co. =

Wb — COO. In Section II of this paper n is replaced by M/2
where M is the number of zeros (all on the jJ axis) per

period of the frequency response. In (A4) CB on the left

is an arbitrary scale factor which can be used to scale
(IA(Lo) in (3).

In Fig. 9 (a)– (c) the equal-ripple regions all have ripple

extremities of A 1. As a result, GA (we) /CB is equal to the

ratio between the maximum passband signal obtained at

w and the maximum stopband signal (which is here scaled

to be one). Conversion of this ratio to decibels gives (1)

where it should be noted that the COS–l and cos in (A4)
have become cosh–1 and cosh, respectively, since the

argument of the COS–l function is greater than one for

w. < w < OJb. The zeros of GA (w) occur at frequencies for
which the square, bracket in (A4) is equal to an odd

multiple of ir/2. Solving for these frequencies leads to (2).

APPENDIX B

DERIVATION OF THE EQUATIONS

FOR THE TYPE 2 CASE

The equations in Section III were derived using a con-

formal mapping and the electrostatic potential analogy

for transfer functions [3]–[5]. The reader is referred to

the References for the details of this analogy. But, briefly,

the general idea of the analogy is as follows. Suppose that

we have a transfer function G(p) defined & the complex-

frequency plane p = a + ,jw by

G(o) = (P – PI) (P – P3)
.< (Bl).. .

(P – P2) (P –

If we take the log of this we obtain

in G(p) = in (p – PI) + In (p – ps)

– In (p – p4)

= in I G(p) I +jarg G(p).

This is mathematically identical to

P4)
.,

– in (p – p,)

(B2)

a two-dimensional

complex potential due to infinite filaments of positive

charge which are directed normal to the p plane and

located at the poles p, and pl, along with filaments of

negative charge located at the zeros pl and p3. The real

part of the complex potential is the ordinary electrostatic

potential while the imaginary part is the flux function.

The reason for using this analogy in this work is because

it can be shown [3] that if an infinite conducting plate is

introduced normal to the p plane, and if the resulting flux

lines about the plate are determined, by quantizing the

charge on the plate at appropriate flux-line locations and”

removing the plate, an equal-ripple band will result in the

region where the plate had been. Thus the electrostatic

potential analogy is a useful tool for synthesizing transfer

functions having equal-ripple bands.

The transfer function in Fig. 2(b) has periodic equal-

ripple bands where the rows” of zeros occur along the

,jw axis. Using the potential analogy to achieve these

equal-ripple bands, we would start out with filaments of

negative charge at the off-j~-axis locations and conducting

plates with distributed negative charge where equal-ripple

bands are required. This problem is unnecessarily complex

as it stands, and it can be simplified considerably by use

of the mapping function (6). Using this mapping, the
configuration in Fig. 10, which has an infinite periodic

arrangement of charged plates in the p plane, maps to the

arrangement in the p’ plane of Fig. 11 which has a single

charged plate.

Let us relate the synthesis of the transfer functions in

Fig. 2(a) and (b) to the potential problems in Figs. 10

and 11, respectively. The transfer function in Fig. 2(b)

has a total of eight zeros per period of which six are on

the ja axis and two zeros (or four half-zeros) are off of the

,~a axis. These are matched by an equal number of poles

at infinity. Accordingly, we will place six units of negative

charge on each plate in Fig. 10, two units of negative
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1. P - PLAI$E

I J@

-Q4bQJ-
II I >C

CONDUCTING PLATES

III IV

III ~ Il?

I

Fig. 10. Electrostatic problem for obtaining bandpass
transfer functions.

jw’
$- PLANE

I
Fig. 11. High-pass equivalent for the problem in Fig. 10.

The flux or phase function @ = arg U is obtained from

(B4) and is given “by the left side of (16).

Let us suppose that the poles and zeros in Fig. 2(a)

are replaced by infinite filaments of positive ar.d negative

charge, respectively. The resulting potential will ha+e

equal ripple between —ti.’ and aa’. The charge configura-

tion in Fig. 2(a) can be obtained from that in Fig. 11 by

proper quantizing of the distributed charge on. the metal

plate [3}[5]. For M even the charge should be quantized

into unit filaments at the flux lines emanating from the

right side of the plate which are odd multiples of 7r/2.

If M is odd the charge should be quantized where integer

multiples of 2r flux lines emerge from the plate. As men-

tioned previously, the left side of (16) is the flux function

for the right side of the plate in Fig. 11 while the right side

type 2 of (16) specifies the flux line where quantization is to

take place. Solution of (16) locates where the jo-axis

filaments (or zeros) should be in Fig. 2(a). BJ use of the

mapping (6) in the form given in ( 18) and. (19), the

desired transfer function of the type in Fig. 2(b) is

obtained.

The functions. (J in (B4) and U2 are, respectively, ew

and e2Wwhere W is the complex potential defined in (B3).

From [3, pp. 922--925] it can be seen that the complex

potential 2W, after charge quantization is accomplished

is related to the potential 2 W before charge q uantization

by

charge per period in filaments off of the & axis, and an

equal amount of positive charge in filaments at infinity.

The mapping (6) maps -part of the point at infinity in the

p plane to U’ = ~ 1 on each sheet of the p’ plane. As a

result, the eight units of positive charge at infinity per

period in Fig. 10 are mapped to two four-unit filaments

indicated by the crosses at u’ = + 1 k Fig. 11.

Tuttle [3, p. 922] has shown that the complex potential

W about an arrangement of both quantized and distributed

charge such as that in Fig. 11 can be calculated from

W= V+,@ =lnl Ul+,iarg U (B3)

where

~ ~ (f3’2 + @a”) 1/2 + W,p’ (M+2)12

[ (p’z + 6Ja’9 ‘/2 – ‘mop’ 1
[

. (P” + (&”) ‘/’ – mlp’

1(P’2+ C!&”) 1/2 + ~lpl “ @4)

Here V is the scalar potential function, @ is the flux

function, m. and ml are defined by (11), and M is the

number (odd or even) of charges on the metal plate.

where the upper sign applies for M even and the lower

sign for M odd. Substituting (B3) and (B4) in (B5) and

expressing the ratio e2Wr(J) /ezWq(wa’) in decibels gives (9).
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Symmetrical Four-Port Edge-Guided Wave Circulators

PIETRO DE SANTIS, MEMBER,

.4bsfract-Four-port microwave-integrated-circuit (MIC) edge-

guided wave circulators (BGC) have been designed, fabricated, and

tested. A mathematical characterization of the strip conductor’s

shape as well as a precise mechanical control of the Vlas inhomo-

geneity are provided. By means of these two techniques the repro-

ducibility of the devicq is greatly improved with respect to that of the

EGC obtained by the traditional cut-and-try methods.

X-band performance data are presented and related to the spatial

distribution of the effective magnetic permeability j.t,ff in the ferrite

substrate. Experimental evidence is reported that an efficient cir-

culator action occurs when peff < 0 at some point under the central

circ~ar shield.

The spatiaf distribution of the RF electric field at the circulator’s

surface is investigated by a rriechsnical probing technique. It is

found that in the lower part of the operation band, RF fields of con-

siderable amplitude extend in the air in the region between the

guiding edge and the substrate’s edge.
.

I. INTRODUCTION

THE rigorous solution of a symtnetrical four-port cir-

culator by using the Green’s function method [1]

requires three circulation conditions to be simultaneously

satisfied [2]. Each condition may be formulated in terms

of an infinite series of modes and subsequently approxi-

mated by a summation over a finite number of terms.

In [2] it is demonstrated that even if a large number

of modes are considered, only a few discrete frequencies

exist at which perfect circulation is achieved. This result

is at variance with that of a three-port circulator for which

perfect circulation conditions may be met over a large

frequency band [3]. Alternatively, it can be stated that

a four-port junction circulator is inherently narrow band

and no “continuous tracking principle” [3] can be found

for it.

In light of these considerations, a stu~y of the broad-

band performance of a four-port edge-guided wave cir-

Manuscript received January 30, 1975; revised June 23, 1975.
The authors are with the Department of Research, Selenia S.p.A.,

Rome, Italy.
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culator (EGC) [4] seems to be of particular interest.

Furthermore, since no difference exists in the basic

principles of operation of three-port and four-port EGC’S,

the experience on the former [5] could be usefully extended

to the latter.

Another motivation of the present work is the fact that

the results published so far on the subject [4] report on

EGC’S with a rather poor performance over a limited

bandwidth.

In the following section a brief presentation is made of

the physical principles which underlie the perfckmance of

EGC’S. Subsequently, these results are applied to the

design of four-port circulators. In Section IV an experi-

mental investigation is presented on the nature of the

volume-wave modes which resonate under conditions of

positive effective rhagnetic permeability. In Section V the

performance data of various types of four-port symmetrical

EGC’S are displayed and compared to the theoretical

predictions. The paper is Ccmiudedby a study on the

spatial distribution of the RF fields existing in a four-

port EGC.

II. PRELIMINARY tiONSIDERATIONS

Ih a previous work [5] the present authors reported on

the construction of a three-port EGC. On that occasion

a precise definition of EGC’S was given in order to un-
derstand clearly how they differ from the traditional

Y junction microwave-integrated-circuit (MIC) circu-

lators.

Referring the reader to [5] for the details, here we

simply recall that the distinguishing feature of an EGC

is the presence of a transtiersai field displacement effect

in the tapered sections of the device. This phenomenon

is absent in a‘ traditional MIC circulator becadse the

impedance transformers are deposited on an isbtropic

substrate and is present here because the whole substrate

is made of a ferrite magnetized perpendicular to the

ground plane.


