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Abstract—Techniques are presented for the synthesis of inter~
digital acoustic surface-wave filter tap weights so as to give transfer
functions having a Chebyshev stopband attenuation characteristic
with a specified minimum attenuation, along with a single-peaked
or a Chebyshev double-peaked passband characteristic. The tech-
niques first give the gain zero locations, and as a result are very
flexible. Linear phase or minimum or maximum phase-shift char-
acteristics are obtainable. The transfer function can be factored into
two sets of zeros which can be realized as two separate apodized
transducers which, when operated with a multistrip coupler, will
give the desired overall transfer function. Also, it is shown that the
class of designs having a double-peaked passband can be realized
in the form of an unapodized phase-reversal transducer (PRT) in
cascade with a second transducer having very smooth apodization
and no phase reversals. The fact that such designs have such smooth
apodization with relatively few small taps can help in obtaining pre-
cision performance. )

" I. INTRODUCTION

N this paper, methods for the determination of finger

tap weights for the two transducers required in an
interdigital acoustic surface-wave filter are treated. Vari-
ous tap-weight design procedures are presented that yield
either of two general classes of Chebyshev filter transfer
functions.

Each tap, in the dlscusswn to follow, is realized by the
gap between two fingers of an interdigital transducer, and
the taps are equally spaced The magnitude of a tap
weight is determined by the active overlap length of the
two adjacent fingers, and the sign of the weight is deter-
mined by the relative polarity of the electric field in the
gap. Since the taps correspond to the finger gaps, it takes
n - 1 fingers to realize n taps.

It is assumed that the transducer electric ports are
lightly loaded so that electrical interaction effects can be
neglected. In this case it can be seen that the tap weights
(put in functional form as a sequence of impulses) approxi-
mate the impulse response of the transducer. Then the
frequency response of a transducer will, of course, be
related to the tap weights by the Fourier transform. In the
designs under consideration the overall transfer function
is the product of the transforms for the two transducers.
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Since the impulse responses of the filters under discus-
sion consist of equally spaced weighted impulses, Fourier
analysis shows that the frequency response must be
periodic. It further can be shown that the transfer func-
tion corresponding to such impulse responses will have
only zeros on the finite plane, all of the poles of the
funetion being combined in an essential singularity at
infinity. This is a severe restriction on the transfer func-
tion since the poles are the natural frequencies of vibration
of the circuit, and one would ordinarily place them adja-
cent to the passbands of the filter. If it were not for this
limitation on the poles, it would take many fewer taps
to realize a desired transfer funetion.

In the discussion to follow, filters with two types of
transfer functions designated type 0 and type 2 will be
discussed. Both have ‘“‘equal-ripple” attenuation in their
stopbands. Type 2 differs from type 0 in that it is capable
of a much flatter passband, but at a price of appreciably
more taps. The type number indicates the number of zeros
in the transfer function off of the ju axis per period of the
transfer function. Thus the type O design has all of its
zeros on the jw axis while the type 2 design has two zeros
per period off the jw axis as’ well as zeros on the jw axis.

II. TYPE 0 DESIGNS

As indicated previously, the type 0 designs have all
their transfer function zeros on the jw axis and all of the
poles at infinity. Fig. 1 shows a sample response for such
a design. Note that the attenuation level is equal ripple in
the stopband and has a minimum attenuation designated
by ATN. The response has arithmetic syminetry about
the frequency wo, and the response is periodic, one period
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Fig. 1. Response for a type 0 design with M = 20.




2 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 1976

of the response being shown in Fig. 1. The width of the
stopband is established by the parameter w,/wo. Distinc-
tive features of this transfer function are its equal-ripple
stopband characteristic and the fact that the passband is
necessarily rounded at the top.

The tap weights for designs of the sort in Fig. 1 could
be obtained by adaptation of Dolph—Chebyshev antenna
design procedures [1]. However, herein a different ap-
proach was used which involved two conformal mappings
and, at least for the purposes herein, this approach appears
to be simpler than the methods eommonly used for
antennas.

Let us now consider the design of tap weights so as to
obtain a transfer funection such as that in Fig. 1. Let M be
the number of zeros per period for the filter response,
where herein for a type 0 design M is required to be an
even number. In Fig. 1, M = 20 since there are 20 points
at which the attenuation is infinite within the frequency
response period. For given values of M and w./w, the
minimum stopband attenuation is given by

2 — sin? (7rwa/2w0)>] dB.

sin? (7w,/2w0)

‘ M
ATN = 20 logy cosh [—9- cosh™? (

(1)

The 1ocation of the zeros of the transfer function which lie
between w = 0 and w = wy are given by

Wi 2. T W
- = —gin~1]sin .
Wo i<l to Mz T 2 o

.<1 — cos [(2k — 1)w/M])1/2],. -

2

Having determined these zeros, the remaining zeros are
determined by symmetry and the periodiec nature of the
transfer function. The derivations of (1) and (2) are
discussed in Appendix A. ‘

The overall transfer function can be specified starting
with a Chebyshev polynomial and applying the mappings
discussed in Appendix A. However, for our present pur-

. poses it will be more convenient to specify the transfer

function in the form
. M2
Galw) = Cs I1 [sin [M] sin [&i“l"—)—”ﬂ (3)
k=1 2u 2w

This funetion constructs all of the required zeros for the
transfer function by use of factors for zeros at wy and —oy,
and then generating the infinite array of zeros required for
periodicity by introducing sine functions. The parameter
C4 in front is an arbitrary constant which can be con-
veniently chosen to make G4(ws) =

Equation (3) is a form for the transfer function which
is particularly convenient for the purpose of taking the
inverse Fourier transform. If we take the inverse Fourier
transform of the pair of sine functions shown in (3), we
obtain

Tk(t) = L cos (Twr/we)d(t)
— ilo(t — 7/wo) +6(t + 7/wo) ] (4)

Since (3) consists of a product of pairs of sine functions,
the inverse Fourier transform for the overall transfer

-function can be obtained by convolution of the transforms

of the various sine-function pairs. Thus- the impulse
response for the filter is obtained by the multiple con-’
volu‘mon

ha(t) = CaTi(t) * To(t) * - -+ % Typ(t) (5)

where the T (f) are as defined in (4). Since the Ty(#)
consist only of delta functions, the convolution in (5)
is very easy to accomplish [27] and results in a sequence of
weighted delta functions (i.e., the tap weights).

We have found that, at least for some cases when M is

large (say, 70 or more), the accuracy of the multiple

convolutions in (5) may degenerate. In such cases the
accuracy is greatly improved by first computing the
frequency response by use of (3) or (A4) of Appendix A.
Then the taps are obtained by use of a discrete Fourier
transform routine such as that in the IBM 360 Scientific
Subroutine Package. Note that in this application the
fast Fourier transform usually is not desirable since it
is specifically limited to cases having 2% samples.

In the upper right of Fig. 1 is shown the approximate
relative tap weights obtained by (5) for this example.
Note that for M = 20 zeros per period the design process
results in M + 1 = 21 taps, which calls for M + 2 = 22
fingers in the transducer. Also note that the tap weights
are more or less triangular in distribution and hence
should be reasonably easy to realize. As discussed in
Section VI, the second transducer to be used in conjunc-
tion with one apodized as in Fig. 1 can usually be a
uniform transducer with a sizable number of fingers.

III. TYPE 2 DESIGNS

Where type O designs are usable, they are very desirable
because of their simplicity of calculation, because of their
relatively smooth apodization with no phase reversals, and
because they require relatively few taps. However, type 0
designs necessarily have rounded passbands, and if the
desired signal is of wide bandwidth, this might not be
acceptable. Since we are constrained to keep all of the
poles of the transfer function at infinity, the only way
that the passband can be flattened is by introduction of
zeros off the jw axis in the vicinity of the passband. This
is illustrated in the complex frequency plane (i.e., p =
o + jw plane) plot in Fig. 2(b). In this plot the zeros are
sketched for a transfer function having M = 6 jw-axis
zeros per period. (Herein M will always be the number of
zeros per period on the jw axis only, and for type 2 designs
M can be odd or even.) The pairs of off-axis zeros near the
passbands have the effect of putting a dip in the center
of the passband, as is indicated in the M = 29 example
plotted in Fig. 3. The term “type 2 design’ will herein
refer to designs having two zeros per period off of the
Jw axis. It would have been possible to have achieved
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(a) High-pass-prototype transfer function. (b) Bandpass
type 2 transfer function.
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Fig. 3. Frequency response for a type 2 design with M = 29.

the desired effect in the response magnitude by use of
only one zero per period off the jw axis, but this would
eliminate the possibility of having linear phase. The
arrangement, of zeros in Fig. 2(b) has quadrantal sym-
metry which guarantees that the jo axis will be a contour
of constant phase except for a jump of = at each zero on
the jo axis.! If, say, only the zeros in the left half-plane
were included, it would be possible to flatten the magnitude
of the response in the passband, but the jw axis would no
longer be a contour of constant phase.

Our design procedure for obtaining tap weights for
transfer functions like that in Fig. 3 is to first obtain a
high-pass prototype design using design equations ob-
tained with the aid of an electrostatic potential analogy
[3], [4] (see Appendix B). Miller [ 5] used similar methods
to treat some related (but different) transfer functions.
Fig. 2(a) shows a pole and zero plot in a p’ plane for s
high-pass prototype transfer function corresponding to

1 The reference ports for the transfer functions derived herein are
at the center of the transducer. Moving the acoustic reference ports
to the ends of the transducers-adds linear phase.

3

the desired p-plane function in Fig. 2(b). The desired
bandpass function and the high-pass prototype will both
have the same stopband attenuation and passhand ripple,
The prototype can be mapped to the desired function by
use of the conformal mapping

p’ = tanh (-@> )
. 200,

Note that the transfer function in the p’ plane ‘n Fig. 2(a)
has fourth-order poles at p’ = o' = 41, wh'ch map to
the point at infinity in the p plane. The jo'-axis zeros in
the p’ plane map to periodic jw-axis zeros in the p plane,
while the zeros at 4o in the p’ plane map to periodic
zeros off the jw axis in the p plane. Points on the imaginary
axis in the two planes are related by

! Tw
w = tan{—}.
2(.00

Let «w, be the lower frequency stbpband edge indicated
by the dashed line in Fig. 3. The correspondirg high-pass
prototype stopband edge is given by

I ( wa)
a
2600

The attenuation characteristic of the high-pass proto-
type can be obtained from

(6)

(7

(8)

U1
dB’ = 10 logy [-4— + o+ %] (9)

402
where for o’ > w,’

U= [[(w’/wa/)z — 1]1/2 + mo(wl/wa')](M+2)/2
[(/w) = 137 = mo(o /o)

. '[(w//wal)z _ 1]1/2 — ml(‘*”/wa,)] 10
[.[(w’/wa’)2 — 1 4 my(w'/wd) (10
and where .
mo = (1 + w22
n 271/2
m = [1 + ("%)] . (11)

In (9), the upper sign is for M even and the lower sign is
for M odd. In (11), o¢ is the location of the right-hand
o’ axis zero in Fig. 2(a). Fig. 4 shows a sketch of a typical
high-pass prototype attenuation characteristic for the
case of M = 6. Notice that the zero-dB reference level
has been taken at the crest of the stopband ripples. The
stopband attenuation level ATN as defined in Fig. 4 can
be calculated by use of (9) with o’ — « 80

3 3 1 4+ me (M+2)/2 (1 —mE>
U—U""<1—mo) 1+m/”

For a given design usually .’ will be known from (8).
In order to obtain a design with a desired value of ATN

(12)
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Fig. 4. Approximate decibel frequency response for the transfer
function in Fig. 2(a).

and with a given passband Chebyshev ripple, it is neces-
sary to search for appropriate values of M and o). We
have done this conveniently by programming (9)—(11).
For a given w,’ and trial value of M the program searches
for a value of oo’ that will achieve the desired passband
ripple. A good starting value for oo’ to use can be obtained

from
-1
D [(M;— 2) (mozmi 1)] (13)
e _D+ (1)22*1-4)”2 (14)
(00) f1as = G@_f—cdfw (15)

This value of ¢” will give a maximally flat passband, and
in order to obtain a Chebyshev ripple in the passband, one
should use a value of ¢, greater than (o¢')fas. If the
value of ATN obtained for the given passband ripple is
too small, then a larger value of M must be used.

After appropriate design values for M and oo’ have
been obtained, the jw’-axis zero locations i’ are obtained
by solving

mﬂwk,/wa’ :l
[1 — (w'/wd) ]
mlwk'/ wa ]
[:1 _ (wkl/wa/)z:lllz
2k — 1) (7/2) |t t0 7,

(M + 2) tan‘l[

— 2 tan™! [

if M = even

= km |t=0 to 7, if M = odd (16)
for the w’. In (16)
J%M/2 if M = even
J=(M-1)/2 if M = odd. )

Having the w in the p’ plane, the corresponding zeros
for the primary period of the function in the p plane are
obtained by

_ _ ’
wp = (20)0/7[') tan™! wi” li=1 to J for M even
k=0 to J for M odd.

(18)

The zeros at p = oy + jw indicated in Fig. 2(b) are
located with the aid of the equation

a0 = (2wo/7) coth™ ay'. (19)

The transfer function for type 2 designs is seen to be
Gs(w) = C5[} cosh (om/wo)
— 1 cos ((w — wo)m/wo) J[sin (wm/2w) ]

J
-II sin [(w — o) 7/2w0] sin [ (0 + wr) 7/ 200 ]

k=1

(20)

Note that (20) has two factors not included in (3) for
type O designs. The first square-bracketed factor intro-
duces the complex zeros at p = & |oo| + jwo and at
periodic repetitions of these points. The second square-
bracketed factor gives zeros at @ = 0, 2w, ete., and should
only be included when M s odd. The multiplier Cs is a
constant which can be adjusted to fix the minimum loss
ratio.

The inverse Fourier transforms of the first and second
square-bracketed terms in (20) are, respectively,

T, () = cosh (oom/wo) [8(t)/2]
+ 1[8(t — /wo) +8(t + 7/w0)] (21)

and
T()(t) = ‘%[5“ — 7l'/2w0) e 5(t + 7!'/2600)‘:'.

The transforms of the remaining factors in (20) giving
jw-axis zeros are obtained by (4). Again the impulse
response can be obtained from the convolution [27] of
these various transforms as indicated by

hy(t) = CTo(t) * To(t) * To() * ---

(22)

*Ts() (23)

or by computing Gz(w) and using the discrete Fourier
transform. For a design having M jw-axis zeros per period
of response, there will be M + 3 tap weights required
and M + 4 transducer fingers.

The solid line in Fig. 3 shows the computed response
for a design having w./wy = 0.8 and ATN about 52 dB,
similar to the design in Fig. 1 but with 0.2-dB Chebyshev
ripple in the passband. This design has M = 29, ¢y =
7.5359, and go/wo = 0.084979. The presence of complex
zeros near the passband in type 2 designs tends to weaken
the passband, and, as a result, more stopband zeros are
required in order to achieve a desired value of ATN.
Thus the type 2 design required 32 taps as compared to
only 21 for the analogous type 0 design in Fig. 1. The
resulting tap weights are shown in Fig. 5(a). Note that
they are symmetrical and have a phase reversal toward
the outer ends of the tap sequence.

IV. SOME DESIGN VARIATIONS

Filter design from the pole and zero viewpoint has an
advantage of flexibility. For example, if we wish we can
obtain a design for the transfer function in Fig. 2(b)
having the same magnitude for frequencies jw but with
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Fig. 5. Tap weights for two type 2 designs with M = 29. (a) Case
of linear phase. (b) Design giving minimum phase when com-
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Fig. 6. The design in Fig. 5(a) factored into two sets of transducer
tap weights. (A multistrip coupler would be required between
these two transducers.)

the left-half-plane zeros moved over to the right half-
plane to yield double zeros there. A possible disadvantage
of such a design is-that it would no longer have linear
phase since the zero pattern would no longer have quadran-
tal symmetry. However, as a matter of interest, such a
design was worked out with the solid-curve magnitude
characteristic in Fig. 3 and with double right-half-plane
" geros. The resulting tap weights are shown in Fig. 5(b).
If this transducer transmits to a wide-band transducer
placed on the left, the overall transfer function.will have
double zeros in the right half-plane; whereas if this con-
“figuration transmits to a wide-band transducer placed on
the right, the overall transfer function will have double
zeros in the left half-plane. Fig. 5(a) and (b) also illus-
trates the point that symmetry in the transducer .con-
figuration goes along with linear phase.

Another variation of the solid-curve design in Fig. 3
was obtained by partitioning the overall transfer function
into two factors by separating alternate jw-axis zeros and
assigning each factor one of the off-jw-axis zeros. Then
one factor was used to realize one transducer while the
other factor was used to realize the other transducer.
When used in conjunction with an intervening multistrip
coupler [67], [7], the overall transfer function will, in
theory, be the product of the transfer functions for the
two individual apodized transducers. Fig. 6 shows the
tap weights for the two transducers. It is of interest to

note that in the case of a previous M = 28 design (which

had no zero at « = 0), when the transfer function was

5

factored into two parts, one of the resulting two trans-
ducers had a sequence of positive taps [12]. Such a
sequence would not be acceptable for use in an acoustic
surface-wave filter. The use of an M = 29 design, which
has a zero at w = 0 and adjacent zeros relatively close
to w = 0, avoids this problem since the frequency response
for both factors is either zero or small at o = 0. (A se-
quence of taps with the same sign can result from a
sizeable frequency response at dc.) ‘

V. INCORPORATION OF A PHASE-REVERSAL
TRANSDUCER

In the left of Fig. 7(b) is shown a tap-weight configura-
tion such as can be realized using the unapodized phase-
reversal type of transducer (PRT) introduced by Bristol
[87]. It can be shown that this type of transduer realizes
a set of zeros off of the jw axis such as those of-axis zeros
shown in Fig. 2(b), along with additional zeros on the
jw axis. Thus a transfer function such as that in Fig. 2(b)
can be realized approximately by use of an unapodized
PRT in cascade with an apodized transducer which has
no phase reversals. Apodization of the second transducer
is needed in order to realize the jw-axis zeros not already
satisfactorily realized by the PRT. Since only one of the
transducers is apodized, the overall transfer function is
simply the product of the transfer functions for the two
individual transducers [107].

Fig. 7 illustrates these principles. Fig. 7(z) shows a
75-tap type-2 design obtained by the methods of Section
II1. By itself it gives a frequency response like that in
Fig. 8, except that it has very accurately controlled equal
ripples in its stopbands with the ripple crests along the
horizontal dashed line in the figure. This design has zeros
off the jw axis as suggested in Fig. 2(b) with | ao/wo | =
0.036628. Such zeros can be realized approximately using
the unapodized PRT taps on the left in Fig. 7(b). The
PRT also introduces other zeros on the jw axis, some of

(=)
<" 2

PHASED—-REVERSED TAPS

(®)

Fig. 7. (a) An M = 72 type 2 design. (b) Two transducer tap
sequences which when operated in cascade give nearly the same
response as for the tap weights at (a).
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Fig. 8. Frequency response for the tap weights in Fig. 7 (b) in
cascade. [The horizontal dashed line indicates the equal-ripple
attenuation level for the design in Fig. 7(a).]

which are quite close to the jw-axis zero locations needed
for the desired transfer function given in (20). Thus the
zeros not already realized by the PRT are grouped
together and realized by a second transducer (which is
type 0 since it has only jw-axis zeros). For this example the
apodized transducer design came out as shown at the right
in Fig. 7(b). Note that the apodization is very smooth
with relatively few small taps, a situation which should
help in the practical realization of the taps. The resultant
response is as shown in Fig. 8 where the stopband attenua-
tion for the transducers in Fig. 7(b) in cascade every-
where equals or exceeds that of the design in Fig. 7(a)
(indicated by the horizontal dashed line), while the pass-
band characteristics are very nearly the same as for the
design in Fig. 7(a).

The design of & PRT with taps such as those in Fig. 7(b)
can be worked out as follows. For frequencies p = juw
the transfer function for a PRT is given by?

sin [Neu]+sin [(N, + 2)u] — sin [Nu]

sin %

T fW — Wy
U == —].
2 wo

In (24) N,is the number of taps in the center section of the
transducer indicated in Fig. 7(b), and N is the total
number of tap positions in the transducer including the
positions of the zero taps at the phase reversals. Thus the
design in Fig. 7(b) has 31 nonzero taps, plus 2 zero taps,
giving N = 33.

One restriction on the design of the PRT is that it must
not produce any jw-axis zeros in the passband region
between w, and «; indicated in Fig. 8. Investigation shows
that the location of the jw-axis zeros closest to wo, the
passband center, is in typical cases controlled predomi-
nantly by N,. As a rough estimate the largest value of N,
that can be used is approximately

(24)

Trr(w) =

where

2 Bristol [8] gave (24) herein with (using our notation) u rather
than sin u in the denominator; that is usually a satisfactory ap-
proximation. However, (24) gives the exact response for taps such
as those in Fig. 7(b) [11]. :

2

1 — wi/wo

(Nc) max ~ (25)

At the complex frequencies p = oy + jwo (and their
periodic repetitions) where zeros of Ger are desired, (24)
becomes

Ger(£ao + Jwo) \
_ sinh[Naw]+sinh [ (N, 4 2)w] — sinh [Nw]

- 26
sinh w (26)
where
w — T
2(.00 )

Our only degrees of freedom for achieving the desired
zeros are in our choices of N, and N. Thus it will usually
not be possible to realize the desired value of ¢, exactly.
However, in the several examples we have tried it was
possible to achieve a value for g, satisfactorily close to
the desired value. (If desired, more degrees of freedom
can be introduced by allowing for the possibility of more
than one zero tap at the phase reversals.) For an exact
design (26) would be equal to zero. Thus the desired
approximate design is obtained by searching for the values
of N. and N which make (26) as small as possible. Our
procedure was to prepare a computer program to evaluate
(26) and find the minimum value of Gpr for trial values
of N, while at first N, is held fixed at (N,)max. Next, N,
is reduced in size by one, and the minimum value versus N
is again sought. This routine quite quickly arrived at
values of N. and N giving a good approximate solution.
It is conceivable that in some cases one might want to
explore larger values of N, than indicated by (25), and
somewhat larger values might be acceptable in some cases
since (25) is only approximate. Solutions using larger
values of N, should be checked using (24) in order to be
sure there are no zeros between w, and ws.

After values of N, and N for the PRT are determined,
the jw-axis zeros introduced by the PRT can be deter-
mined from (24). These zeros could be simply added to
the ones in (20), but it is found to be desirable to thin the
zeros out some or the passband will be narrowed. This is
particularly true for excess zeros immediately adjacent
to the passband. Excess jo-axis zeros well away from the
passband increase attenuation in that region but have
little other effect. Many of the zeros from the PRT will be
quite close to locations called for by the transfer function,
so the apodized transducer need supply only part of the
Jw-axis zeros. It is not difficult to make a reasonably good
selection of zeros but it is good to check the overall
transfer function versus frequency after a selection has
been made. This is readily done by taking the product of
(24) for the PRT and (3) for the apodized transducer.

It is probable that this technique of realizing transfer
functions using an unapodized transducer with phase
reversals along with an apodized transducer can be ex-
tended to treat cases with more than two ripples in the
passband. However, further mathematical derivations will
be needed for such cases.
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VI. PHYSICAL REALIZATION OF THE TAPS

This paper is addressed primarily to the problem of
determining appropriate tap weights for certain types of
bandpass filters. However, there are additional considera-
tions involved in the practical realization of these taps,
and it appears appropriate to make some brief mention
of them.

Since in surface-wave filters of the types under con-

sideration it is necessary to go from electrical to mechanical
energy and back again, two transducers are always re-
quired. For a design like that in Fig. 1 the second trans-
ducer can be one with a reasonably large number of fingers
having uniform length and with no reversals in the finger
sequence. This second transducer would increase the stop-
band attenuation and narrow the passband somewhat,
but these effects would presumably be acceptable if a
rounded passband as in Fig. 1 were adequate for the
application at hand. Designs such as those in Fig. 5(a)
and (b) and in Fig. 7(a), which are intended to yield a
relatively square passband region, would require the use
of a wide-band output transducer having only a few
fingers if the passband is not to be distorted. This would
typically result in an unnecessarily large minimum loss
for the filter. In addition, the relatively large number of
small taps (i.e., small finger overlaps) in these designs
may lead to performance errors due to diffraction and
also due to the fringing fields at the ends of the fingers
being a significant percent of the desired small effective
overlap. These sources of error are minimized in the
design in Fig. 1 which has very smooth apodization with
relatively few small taps and no phase reversals.
- If the overall transfer function is to be realized using
two apodized transducers as in Fig. 6, it is necessary to
use a multistrip conpler between the two transducers [7],
or else the response will be greatly distorted [107]. This
approach can give good results and the multistrip coupler
has an added advantage of helping to reduce bu'k-wave
responses {7 |. However, the inclusion of a multistrip
coupler also has disadvantages of introducing more loss,
requiring a more complex photomask, and requiring a
larger substrate since the device pattern must be twice
as wide. In addition, if the overall transfer function is
factored to realize two transducers as in Fig. 6, or if two
transducers as in Fig. 7(a) are used, the transducers
will again involve a sizable number of relatively small
taps with phase reversals.

Though the various approaches previously outlined can
give satisfactory results if properly implemented, the use
of designs such as that in Fig. 7(b) appears to us to provide
a potentially attractive means for implementing precision
designs. The apodized transducer on the right is of type 0.
Thus it has no phase reversals, and has a smooth apodiza-
tion with relatively few small taps. These factors should
help to improve the accuracy of tap realization. Also since

the PRT on the left is unapodized, no multistrip coupler

is required. However, our initial experiments with PRT’s
indicate that some additional work on the design of PRT’s
is desirable. This is because if the PRT is composed of
electrodes with uniform widths and gaps throughout, the

7

effective tap strengths at the ends of the transducer and
in the vicinities of the phase reversals are somewhat
different than those in the rest of the transducer due to
the different patterns of the interelectrode fringing electric
fields in these regions. This results in a somewhsit oversized
passband ripple with slightly unequal minimum attenua-
tion points, and also causes some small errors in the jow-axis
zero locations. We believe that at least in c¢r near the
fundamental passband the frequency response errors due
to these transition-region fringing field patterns can be
compensated by proper altering of the finger widths and
gaps in the vicinities of the ends of the transducer and in
the vicinity of the phase reversals. We propose to inves-
tigate this matter in the future.® Such refineraent of the
PRT design should help to achieve unusually good design
aceuracy for designs as in Fig. 7(b).

APPENDIX A

DERIVATION OF EQUATIONS FOR
THE TYPE 0 CASE

The equations for the type 0 case are reaclily derived
starting from a Chebyshev polynomial

T.(o") = cos (n cos™ o) (A1)

and then applying conformal mappings. Fig. 9(a) shows
a sketch of a Chebyshev polynomial versus «’' for the
case of n = 4. The polynomial in (A1) is then mapped to

Tolw")

+

- o
SN O] _ N
1

(a)

{b)

‘n“m‘r\‘j[ﬁx @

N\ ]
_°T VLN W N N2 S\ 3%, \.~

Wy wy

Glw)

(c)

Fig. 9. (a) A Chebyshev polynomial. (b) The polynomial mapped
by (A2). (¢) The previous result mapped again >y (A3).

3 References [13] and [14] analyze the fringing effects about -
structures with fixed finger widths and periods, whare the struec-
ture may have phase reversals and/or missing fingers. The investi-
gation proposed differs in that, while most of the finger widths and
periods remain fixed, some of the finger widths and positions would
be modified in order to more aceurately realize the given taps..
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a new frequency variable »’ by use of the mapping

/2 2

14
w? — w,

A

17
w

(A2)

It

where

V4
1 — we'?

2

Mzc+wy{
2

Fig. 9(b) illustrates the effect of this mapping on the
polynomial in Fig. 9(a). Here w,’ is an equal-ripple band-
edge frequency which is arbitrary within the limits
0 < w,’ < 1. The frequency w, is the mapping of the
original zero frequency '’ = 0.

The function in Fig. 9(b) has some of the desired form
but is not yet the desired function since it is not periodic,
and since it increases monotonically for | o’ | > 1. To get
the desired result we introduce the additional mapping

. Tw
w = —Co8 | —

and

(A3)
\2wo

which converts the function in Fig. 9(b) to the form in
Tig. 9(c). Here w is the passband-center frequency, and
the mapping has the effect of mapping the region from
o = —1to o = +1 in Fig. 9(b) to the region « = 0
to w = 2w in Fig. 9(c), and also to periodic repetitions of
this region. Equations (A2) and (A3) applied to (Al)

cause 7', (w’") to map to

Ga(w)

Cs = (=0

[ i (Sin2 (wwa/2w0) — 2 Sin2(1rw/2wo)>:l
<COS | 72 COS

sin? (7rwa/2w0)

(A4)

which is the function sketched in Fig. 9(c) for the case of
n = 4. Here w, is a mapping of w,’, and wo — we =
ws — wo. In Section II of this paper n is replaced by M /2
where M is the number of zeros (all on the jw axis) per
period of the frequency response. In (A4) Cp on the left
is an arbitrary scale factor which can be used to scale
Ga(w) in (3).

In Fig. 9(a)—(c) the equal-ripple regions all have ripple
extremities of 1. As a result, Ga(w)/Cs is equal to the
ratio between the maximum passband signal obtained at
wo and the maximum stopband signal (which is here scaled
to be one). Conversion of this ratio to decibels gives (1)
where it should be noted that the cos™ and cos in (A4)
have become cosh~! and cosh, respectively, since the
argument of the cos™ function is greater than one for
we < w < wp. The zeros of Ga(w) ‘occu‘i at frequencies for
which. the square bracket in (A4) is equa‘l to an odd
multiple of w/2. Solving for these frequencies leads to (2).

APPENDIX B

DERIVATION OF THE EQUATIONS
FOR THE TYPE 2 CASE

The equations in Section IIT were derived using a con-
formal mapping and the electrostatic potential analogy
for transfer functions [3]-[5]. The reader is referred to
the References for the details of this analogy. But, briefly,
the general idea of the analogy is as follows. Suppose that
we have a transfer function G(p) defined in the complex-
frequency plane p = ¢ + jw by

(- p1) (p — Ps)
@) = o =

If we take the log of this we obtain

(BIL)

InG(p) =ln(p—p) +In(p—p) —In(p — p)
—In (p — ps)
=1In|G(p) | + jarg G(p).

This is mathematically identical to a two-dimensional
complex potential due to infinite filaments of positive
charge which are directed normal to the p plane and
located at the poles p. and ps, along with filaments of
negative charge located at the zeros pi and ps. The real
part of the complex potential is the ordinary electrostatic
potential while the imaginary part is the flux function.
The reason for using this analogy in this work is because
it can be shown [37] that if an infinite conducting plate is
introduced normal to the p plane, and if the resulting flux
lines about the plate are determined, by quantizing the
charge on the plate at appropriate flux-line locations and
removing the plate, an equal-ripple band will result in the
region where the plate had been. Thus the electrostatic
potential analogy is a useful tool for synthesizing transfer
functions having equal-ripple bands.

The transfer function in Fig. 2(b) has periodic equal-
ripple bands where the rows of zeros occur along the
jw axis. Using the potential analogy to achieve these
equal-ripple bands, we would start out with filaments of
negative charge at the off-jw-axis locations and conducting
plates with distributed negative charge where equal-ripple
bands are required. This problem is unnecessarily complex
as it stands, and it can be simplified considerably by use
of the mapping function (6). Using this mapping, the
configuration in Fig. 10, which has an infinite periodic
arrangement of charged plates in the p plane, maps to the
arrangement in the p’ plane of Fig. 11 which has a single
charged plate. ‘

Let us relate the synthesis of the transfer functions in
Fig. 2(a) and (b) to the potential problems in Figs. 10
and 11, respectively. The transfer function in Fig. 2(b)
has a total of eight zeros per period of which six are on
the jo axis and two zeros (or four half-zeros) are off of the

(B2)

jw axis. These are matched by an equal number of poles

at infinity. Accordingly, we will place six units of negative
charge on each plate in Fig. 10, two units of negative
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Fig. 10. Electrostatic problem for obtaining bandpass type 2
transfer functions.
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Fig. 11. High-pass equivalent for the problem in Fig. 10.

charge per period in filaments off of the jw axis, and an
equal amount of positive charge in filaments at infinity.
The mapping (6) maps-part of the point at infinity in the
p plane to ¢/ = X1 on each sheet of the p’ plane. As a
result, the eight units of positive charge at infinity per
period in Fig. 10 are mapped to two four-unit filaments
indicated by the crosses at ¢’ = 1 in Fig. 11.

Tuttle [3, p. 9227 has shown that the complex potential
W about an arrangement of both quantized and distributed
charge such as that in Fig. 11 can be calculated from

W=V+4+j@=In|U|+jargU (B3)
where
U= [(plz + Coalz) 1/2 _|_ ,mop/](M+2)/2
7" + w7 — gy
(0 + ) —
.[(27'2 + w2V + mp']” (B4)

Here V is the secalar potential function, ® is the flux
function, me and m, are defined by (11), and M is the

number (odd or even) of charges on the metal plate.
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The flux or phase function ® = arg U is obtained from
(B4) and is given by the left side of (16). ,

Let us suppose that the poles and zeros in Fig. 2(a)
are replaced by infinite filaments of positive ard negative
charge, respectively. The resulting potential will have
equal ripple between —w,’ and w,’. The charge configura-
tion in Fig. 2(a) can be obtained from that in Fig. 11 by
proper quantizing of the distributed charge on the metal
plate [31-[5]. For M even the charge should be quantized
into unit filaments at the flux lines emanating from the
right side of the plate which are odd multiples of =/2.
If M is odd the charge should be quantized where integer
multiples of 7 flux lines emerge from the plate. As men-
tioned previously, the left side of (16) is the flux function
for the right side of the plate in Fig. 11 while the right side
of (16) specifies the flux line where quantization is to
take place. Solution of (16) locates where the jw-axis
filaments (or zeros) should be in Fig. 2(a). By use of the
mapping (6) in the form given in (18) and (19), the
desired transfer. function of the type in Fig. 2(b) is
obtained.

The functions.- U in (B4) and U? are, respectively, e%
and e*" where W is the complex potential defined in (B3).
From [3, pp. 922-925] it can be seen that the complex
potential 2W, after charge quantization is accomplished
is related to the potential 2W before charge quantization
by

e = cosh (2W) £+ 1 (B5)

where the upper sign applies for M even and the lower
sign for M odd. Substituting (B3) and (B4) in (B5) and
expressing the ratio €% ¢(w’) /e2¥ ¢(w,") indecibels gives (9).
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Symmetrical Four-Port Edge-Guided Wave Circulators

PIETRO DE SANTIS, MEMBER, IEEE, AND FIORAVANTE PUCCI

Abstract—Four-porf microwave-integrated-circuit (MIC) edge-
guided wave circulators (EGC) have been designed, fabricated, and
tested. A mathematical characterization of the strip conductor’s
shape as well as a precise mecharical control ¢f the bias inhomo-
geneity are provided. By means of these two techniques the repro-
ducibility of the device is greatly improved with respect to that of the
EGC obtained by the traditional cut-and-try methods.

X-band performance data are presented and related to the spatial
distribution of the effective magnetic permeability u.s in the ferrite
substrate. Experimental evidence is reported that an efficient cir-

culator action occurs when Beit < 0 at some point under the central
circular shield,

The spatial distribution of the RF électric field at the circulator’s
surface is mvestlgated by a miechanical probmg technique. It is
found that in the lower part of the operation band, RF fields of con~
siderable rampli'tude extend in the air in the region between the
guiding edge and the substrate’s edge.

I. INTRODUCTION

HE rigorous solution of a symmetrical four-port cir-

culator by using the Green’s function method [1]
requires three circulation conditions to be simultaneously
satisfied [2]. Each condition may be formulated in terms
of an infinite series of modes and subsequently approxi-
mated by a summation over a finite number of terms.

In [2] it is demonstrated that even if a large number
of modes are considered, only a few dlscrete frequencies
ex1st at whieh perfeet circulation is achieved. This result
is at variance with that of a three-port circulator for which
perfect circulation conditions may be met over a large
frequency band {37. Alternatively, it can be stated that
a four-port junction circulator is inherently narrow band
and no “continuous tracking principle’”’ [3] can be found
for it.

In light of these considerations, a study of the broad-
band performance of a four-port edge-guided wave cir-

Manuseript received January 30, 1975; revised June 23, 1975.
The authors are with the Department of Research, Selenia S. p.A.,
Rome, Italy.

culator (EGC) [4] seems to be of particular interest.
Furthermore, since no difference exists in the basic
principles of operation of three-port and four-port EGC’s,
the experience on the former [5] could be usefully extended
to the latter.

~ Another motivation of the present work is the fact that
the results published so far on the subject [4] report on
EGC’s with a rather poor performance over a limited
bandwidth.

In the following section a brief presentation is made of
the physical principles which underlie the performance of
EGC’s. Subsequently, these results are applied to the
design of four-port circulators. In Section IV an experi-
mental investigation is presented on the nature of the
volume-wave modes which resonate under conditions of
positive effective magnetic permeability. In Section V the
performance data of varicus types of four-port symmetrical
EGC’s are displayed and compared to the theoretical
predictions. The paper is concluded by a study on the -
spatial distribution of the RF fields existing in a four-
port EGC.

II. PRELIMINARY CONSIDERATIONS

Ih a previous work [5] the present authors reported on
the construction of a three-port EGC. On that occasion
a precise definition of EGC’s was given in order to un-
derstand clearly how they differ from the traditional -
Y junction microwave-integrated-circuit (MIC) circu-
lators. .

Referring the reader to [5] for the details, hére we
simply recall that the distinguishing feature of an EGC
is the presence of a transversal field displacement effect
in the tapered sections of the device. This phenomenon
is absent in a traditional MIC circulator because the
impedance transformers are deposited on an isbtropic
substrate and is present here beeause the whole substrate
is made of a ferrite magnetized perpendicular to the
ground plane.



